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Chiral currents in gold nanotubes
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Results are presented for the electron current in gold chiral nanotubes (AuNTs). Starting from the band
structure of (4,3) and (5,3) AuNTs, we find that the magnitude of the chiral currents are greater than those
found in carbon nanotubes. We also calculate the associated magnetic flux inside the tubes and find this to be
higher than the case of carbon nanotubes. Although (4,3) and (5,3) AuNTs carry transverse momenta of similar
magnitudes, the low-bias magnetic flux carried by the former is far greater than that carried by the latter. This
arises because the low-bias longitudinal current carried by a (4,3) AuNT is significantly smaller than that of a

(5,3) AuNT.
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Nanotubes and nanowires are of interest, not only because
of their potential for deployment as interconnects, p-n junc-
tions, and rectifiers’2 in future nanoscale circuits, but also
because they exhibit fundamental physical properties, such
as conductance quantisation,>* and magic numbers reflecting
structural stabilities.>® One ubiquitous property associated
with nanotubes is chirality, which arises because there is an
infinite number of ways of rolling up a two-dimensional (2D)
periodic lattice to form a cylinder. In addition to widely stud-
ied carbon nanotubes,’ chiral nanotubes have been formed
from a range of other materials, including gold>%?
platinum,'® silver,!' alkaline metals,'>'* and boron
nitride.'>'¢ These experimental observations have been sup-
ported by a range of theoretical investigations.'’~2?

It has recently been noted that the presence of intrinsic
chiral electron currents in chiral nanotubes can be exploited
to yield photogalvanic effects in heteropolar nanotubes,!” a
new drive mechanism in carbon-nanotube windmills,?® and
to produce internal magnetic fields in carbon-nanotube
solenoids.”* In each of these examples, the underlying lattice
is hexagonal, with two atoms per unit cell. In contrast, nano-
tubes formed from gold, silver, and platinum are derived
from triangular lattices with one atom per unit cell and there-
fore it is of interest examine whether or not these effects are
enhanced or diminished compared with their carbon counter-
parts.

In this Brief Report, to answer these questions, we exam-
ine chiral currents in gold nanotubes. Our choice of gold is in
part motivated by the fact that chiral currents are expected to
scale with the Fermi velocity of the underlying two-
dimensional lattice, which in gold is approximately double
that of graphene.

As shown in Fig. 1, a nanotube formed from a 2D lattice
with periodic boundary conditions can be described by a
chiral vector C=na;+ma,, which defines the circumference
of the nanotube, where a; and a, are the lattice vectors and n
and m are integers. The axis of the nanotube lies parallel to
the longitudinal translation vector T (which is perpendicular
the chiral vector), whose magnitude is equal to the length of
the nanotube unit cell, along the tube axis. To understand the
currents carried by such a nanotube, we first calculate the
electron group velocity components in the chiral and longi-
tudinal directions. These are given by #iv-=JE(K)/dk, and
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fhvr=0E(K)/ dky, where kC=k~é and kT:k-’f are compo-
nents of the wave vector k parallel to the unit vectors C and

A

T, respectively. In the presence of periodic boundary condi-
tions, k. is quantized and takes the values

2mq

o) —
c7 c

, q=Nyp,Ny+1,Ny+2,...,Ng+N—-1,
where N is the number of the minibands and C=|C|. Since ¢
and g+N are equivalent, N, is an arbitrary integer. In what
follows, N, is chosen such that if N is even, Ny=1-N/2,
whereas if N is odd, N0=%V. We also choose N to equal to
the number of unit cells of the 2D lattice contained within a
unit cell of the nanotube and therefore —7 =k,<7, where
T=|T|.

The simplest model describing electronic properties of a
triangular lattice consists of a tight-binding Hamiltonian with
one orbital per atom. The dispersion relation of such an in-
finite sheet takes the form

E(k)=-2y(cosk-a;+cosk-a,+cosk-az), (1)

where 7 is the nearest-neighbor coupling, a;=-5(1, V3) and
a,=a(1,0) are lattice vectors of the triangular lattice,

FIG. 1. (Color online) A (4,3) AuNT and a triangular sheet
showing a (4,3) chiral vector. Periodic boundary conditions make
the two lattice points at the ends of C vector identical. The T vector
shows the unit cell of the AuNT. The thin red lines show the first,
second, and third nearest neighbors of the highlighted lattice point.
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TABLE . Fitted coupling parameters for a 2D triangular lattice sheet with lattice constant a=2.73 A and

for perfect (4,3) and (5,3) AuNTS (in eV).

n,m € Y1 Y2 Y3 Y4 Vs Yo V7 Vs Yo
Sheet 0 0.95 -0.45 -0.14
43 0.6 1.13 0.5 1.56 -0.23 -0.14 -04 -0.19 -0.2 -0.13
5,3 0.69 0.74 1.07 0.42 -0.61 -0.21 -0.39 0.1 -0.18 0.38

az=a;+a, is an auxiliary vector and a is the lattice constant.
For a triangular lattice T= 2":1_”3 1+'";2" a,, where d
=GCD(2m-n,2n—m).

For the case of a nanotube formed by imposing
periodic  boundary conditions, E(k)=E(k(C”),kT) and
N=2(n*+m>-nm)/d. To go beyond this simple model, we
performed density functional theory (DFT) calculations?®?’
on AuNTs and a triangular gold lattice, whose lattice con-
stant (obtained by relaxing the size of the unit cell) was
found to be a=2.73 A. By fitting the resulting band struc-
tures to a third nearest-neighbor model, we obtained a more
accurate dispersion relation of the form

9

E(k(q),kr) =€ - 2> v cos(a,-k(cq) + Biky), ()
i

where ai=é~ai, ,3i='i'~a,-, and a=a;+az, as=a,+as,
ag=a,—a;, a;=2a,, ag=2a,, and ag=2a; auxiliary vectors.

The values obtained for these couplings are shown in
Table 1. To account for curvature effects, nine different cou-
plings are needed for AuNTs, whereas, due to symmetry,
only three are needed for a flat sheet. With this choice of
parameters, the ordering of the bands in Eq. (2) follows that
obtained from DFT. In contrast, we found it impossible to
obtain the correct ordering using the simple nearest-neighbor
model of Eq. (1).

In what follows, we focus on the (5,3) and (4,3) AuNTs,
since these are realistic experimental targets.%> As a conse-
quence of curvature, we also expect that the Fermi energy of
the tube will be shifted from that of the sheet. This shift is
taken into account by an appropriate choice of €,. Further-
more, since the effect of curvature depends on the choice of
n,m, the couplings are also allowed to vary with n,m. The
corresponding band structures are shown in Fig. 2.

By differentiating the dispersion relation (2) with respect

to k¢ and ky, the longitudinal group velocity (parallel to 'f‘) is
found to be

9

ﬁU(Tq)(kT) =22, YiBi sin(a,-k(c") + Bikr) (3)
i=1
and in the transverse group velocity (parallel to é) is
9
hw (k) = 22, yia; sin(akl? + Biky). (4)

i=1

As a reference velocity we note that the Fermi velocity for
the triangular sheet (which varies by *=10% around the
Fermi surface) has an average value of vy=1.8X10° m/s,
when averaged over the Fermi surface.

For an infinitely long AuNT, we now compute the chiral
velocities of right-moving electrons, [i.e., with vgff)(kT) >0],
by first inverting Eq. (2) to obtain k; as a function of E and
q. We denote this inverse k(Tq)+(E), where + sign refers to
solutions belonging to branches with vgff)>0. Real values of
this function arise in the energy range s(<")SE< s(;’), where
s(<q) is the bottom of positive-v(Tq) branch of the gth miniband
and 8(>q) is the top of the positive-slope branch of the gth
miniband. Substitutin% K9*(E) into Eq. (4) yields the chiral
velocity v¥@*(E)=vY [kiq)Jr(E)] belonging to right-moving
electrons of energy E. The total chiral velocity for the all
right-moving electrons of energy E is obtained by summing
u}) the chiral velocities for each miniband with a real
KO*(E), to yield

Ng+N-1
v ME)= X vME)O(E-e9)0(Y -E). (5)
q=Ny

To invert Eq. (2), we note that since Bik;<2mr7, and for
most of the n,m pairs, T is much longer than a, the cosine
functions can be approximated by parabolae, from which one
can easily obtain an expression for k7 as a function of energy,
along with the allowed miniband energy ranges. To obtain an
explicit form for the energy dependence of the transverse
velocity near an energy band minimum, we note that in the
sum on the right-hand side of Eq. (5), if the condition
8(<‘1)SE < 8(>q) is satisfied for a given ¢, then usually it is not
satisfied for —¢g, because a miniband with no local extremum
in the Brillouin zone satisfies 6= 9=%. However, if it has

E - Er [eV]

(a)

FIG. 2. (Color online) The black dashed lines show the DFT
calculated band structure of the perfect folded AuNT. The red
curves show the fitted tight binding band structure. E is the Fermi
energy.
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FIG. 3. (Color online) The top, second, and third rows show
chiral and longitudinal velocities and their ratios for each miniband
of the (4,3) and (5,3) AuNTs. The red curves show those chiral
velocity values belonging to right-moving electrons. Those of left-
moving electrons are shown by dotted curves. The thick black curve
shows the sum of the corresponding red curves. and the chiral ve-
locities (red lines) for each channel. The velocities are in units of
average Fermi velocity v of the triangular lattice sheet. The capital
letters label individual open channels.

local extremum in Brillouin zone, then both ¢ and —¢ give
contributions to the sum because if the miniband has a mini-
mum, then s(<‘1)=s(<_‘1), and if it has maximum then
s(>q>=s(>_q). Therefore, in the case of a minimum, the begin-
ning of the energy ranges of the minibands overlap and in
case of maximum the end of the energy ranges overlap. Con-
sequently, channels open (close) in pairs when there is a
band with local minimum (maximum). Just as a channel pair
opens (closes) they give a combined contribution to the
right-hand side of Eq. (5). Noting that 8;K;<<2 and Taylor
expanding Eq. (4) in k; around zero, one can find that the
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FIG. 4. (Color online) The forces against bias voltage. The red
curve belongs to (4,3) AuNT and the blue curve belongs to the (5,3)
AuNT.

contribution from the channel pair ¢,—¢g is a square-root
function of E. The g=0 case, which belongs to the first chan-
nel and does not have partner, yields a contribution

9
5 9 E—¢+ 22 Y
J
U(C(‘))+(E) =~ %2 Y B; 9
E 71,8,2‘
J

The above square-root behavior near the bottom of a
miniband is also found in carbon nanotubes (CNTs).2* For
gold (4,3) and (5,3) AuNTs, the top row of Fig. 3 shows
chiral velocities of individual minibands (red curves A-D) as
function of energy, along with the total chiral velocity (black
curves), obtained by summing the individual velocities. The
second row of Fig. 3 shows the longitudinal velocities of
individual minibands. The sign of the chiral velocities alter-
nates with successive open channels, leading to oscillations
in the total chiral velocity with energy. To illustrate the be-
havior of these quantities when bands open and close, results
are plotted over a wider energy range than that used in Fig. 2.
However, results are only meaningful at low energies and
therefore when predicting forces and magnetic fields in Figs.
4 and 5, we revert to energies within 1 eV of Ep.

B [mT]
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FIG. 5. (Color online) The magnetic field against bias voltage.
The red curves belongs to (4,3) AuNT and the blue curve belongs to
the (5,3) AuNT.
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The chirality of right-moving electrons can play an impor-
tant role in driving nanomotors, because they can exert a
torque on the AuNT. An estimate of the maximum possible
tangential force is given by the total flux of tangential mo-
mentum associated with right-moving electron injected into a
bias-voltage window —[5/ , %/ This takes the form

m +eU/2
Fo="2¢ f vV (E)dE

h —eU/2
No+N=-1 ~reun2
2m
N AT

h q=N —eU/2
XO[E - £9710[\9* - E1dE.

Figure 4 shows the resulting force for (4,3) and (5,3)
AuNTs. As expected, this is higher than in CNTs, because
chiral velocity at the Fermi energy is finite and also, because
the Fermi velocity of AuNTs (which sets the velocity scale)
is greater than that of CNTs.

A further consequence of the chirality is the presence of
an induced magnetic field, given by?*

5o %@Nog_l +eU/2 U(Cl'1)+(E)
h C oy, J-eun i (E)

XO(E - 909 - E)dE.

The integrand of this expression involves the ratio of the
chiral to longitudinal velocities. For individual minibands,
these ratios are shown in the third row of Fig. 3. The result-
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ing magnetic fields are shown in Fig. 5. Comparison between
Figs. 4 and 5 shows that although (4,3) and (5,3) AuNTs
carry transverse momenta of similar magnitudes, the low-
bias magnetic flux carried by a (4,3) AuNT is far greater than
that carried by the (5,3) AuNT. This arises because the ve-
locity ratio of the former is significantly higher than the lat-
ter, even though they possess similar chiral velocities near
the Fermi energy.

We have calculated the chiral velocities carried by elec-
trons in infinitely long (4,3) and (5,3) AuNTs, which, as
shown in Ref. 24, can be a guide to the size of chiral currents
in finite NTs connected to reservoirs. We have found that in
a similar fashion to CNTs, chiral currents are oscillatory
functions of energy, but unlike in CNTs, the chiral current
has a finite value near Er. Furthermore, the tangential force
and the induced magnetic field is higher than in comparable
CNTs. We have considered perfectly periodic nanotubes
only. For the future it will be of interest to examine the effect
of chirality on Wigner delay times,”® which are relevant to
charge pumping consider and to consider the effect of disor-
der on chiral currents. In this regard, one notes that at least in
one dimension, disorder, which preserves the average spatial
symmetry of a lattice, does not completely randomize the
phase and density of current-carrying states.>>3° Therefore,
one expects chiral currents to persist in the presence of dis-
order, although with a diminished magnitude.
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